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June 21, 2006
Revised December 4, 2006

Abstract

We consider the three-dimensional elastic wave equation for an isotropic inhomogeneous material
subject to a stress-free boundary condition. Building on our recently developed theory for difference
methods for second order hyperbolic systems [Kreiss et al., SIAM J. Num. Anal. 40, 2002], we
develop an explicit, second order accurate technique which is stable for all ratios of longitudinal over
transverse phase velocities. The spatial discretization is self-adjoint and the stability is obtained
through an energy estimate. Seismic events are often modeled using singular source terms and we
device a technique to place sources independently of the grid while retaining second order accuracy
away from the source. Several numerical examples are given.

1 Introduction

As a model for seismic wave propagation, we consider the elastic wave equation for an isotropic inhomo-
geneous material in a three-dimensional domain Ω,

ρ
∂2u

∂t2
= ∇ · T + f , x ∈ Ω, t ≥ 0, (1)

T = λ(∇ · u)I + µ
(
∇u +∇uT

)
,

subject to initial data
u(x, 0) = U0(x), ut(x, 0) = U1(x), x ∈ Ω.

Here T is the stress tensor, u = u(x, t) is the displacement vector with Cartesian components u =
(u, v, w)T , where x = (x, y, z)T is the location and t is time. f is the external (volume) forcing and the
material properties are characterized by the density ρ(x) > 0, and the Lamé parameters λ(x) > 0 and
µ(x) ≥ 0. The degenerate case µ = 0 corresponds to acoustic wave propagation and will not be discussed
here. We henceforth assume µ(x) > 0.

Common boundary conditions include a Dirichlet condition for u or a normal stress condition

T · n̂ = λ(∇ · u)n̂ + µ(∇u +∇uT ) · n̂ = g, (2)
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which prescribes the stresses on a boundary with unit normal n̂. When g = 0, this boundary condition
is often called a free surface or stress-free condition. The system (1) admits longitudinal (P, or primary)
and transverse (S, or secondary) waves which propagate at phase velocities

cp =
√

(2µ+ λ)/ρ, and cs =
√
µ/ρ,

respectively. There can also be surface waves, which travel along a free surface, as well as waves which
travel along internal material discontinuities.

Finite difference approximations of the elastodynamic equations in second order formulation have been
around for a long time [1]. Early methods, based on explicit centered difference approximations, were
initially very successful but suffered from instability problems when a free surface boundary condition
was imposed, and the ratio between the P- and S-wave velocities,

ν =
cp
cs

became too large [11] (note that ν >
√
2). Ilan [12] proposed a remedy which only applied to materials

with constant properties normal to the boundary, and an implicit boundary update technique was sug-
gested by Vidale and Clayton [23]. However, no generally applicable, stable, explicit discretization was
found for the second order formulation which worked for high values of ν. Due to the instability problems,
alternative formulations were explored where the elastic wave equation was rewritten as a larger first order
system for the three velocity and six stress components, and discretized on a staggered grid [19]. Most
current finite difference methods for seismic wave propagation are based on the staggered grid technique.
It is however difficult to handle complex geometry (e.g., topography) with these staggered grid methods,
so there has been recent interest in more expensive methods based on unstructured meshes, such as the
spectral element technique described by Komatisch and Tromp [13].

In this paper we revisit the problem of devising an explicit finite difference method for the elastic wave
equation in second order formulation. Building on our recently developed theory for difference methods
for second order hyperbolic systems [16], we develop a technique which is stable for all ratios cp/cs.
We focus on the long-wave approximation where topography is neglected and the stress-free boundary
condition is enforced on a flat surface which is aligned with a grid direction. However, our longer term
goal is to extend the embedded boundary technique [17, 15, 14] to the elastic wave equation for handling
general domains. In seismic applications, the material parameters ρ, µ, and λ often vary on a length scale
which is significantly smaller than the wave length of the elastic waves. Hence the material parameters can
vary rapidly on the computational grid, and to guarentee stability it is desirable to develop a numerical
method which satisfies an energy estimate. For a hyperbolic system in second order formulation, the key
to an energy estimate is a spatial discretization which is self-adjoint, i.e., corresponds to a symmetric or
symmetrizable matrix. In this paper, we present a discretization which makes the spatial approximation
second order accurate, self-adjoint, and explicit. The self-adjoint property also implies that the method
is conservative.

In Section 1.1 we introduce the basic ideas behind our spatial discretization by studying the scalar
wave equation with a cross term in two space dimensions. The discretization technique is generalized
to the elastic wave equation in Section 2, where we present a theory proving that the method is second
order accurate and stable for all values of cp/cs. The stability and accuracy of the new method are also
illustrated with computational experiments. Seismic events (for example, earthquakes) are often modeled
using singular source terms applied at points, along lines, or over surfaces in the three-dimensional domain.
In Section 3 we device a technique to place sources independently of the grid while retaining second order
accuracy away from the source. We also study how the temporal smoothness of a point source effects
the spatial smoothness of the solution. In Section 4 we first study how the phase velocity of surface
waves depends on the number of grid points per wave length. Thereafter, we solve a benchmark problem
for a simplified earthquake where the sources are distributed along a plane. Some comments on our
implementation of non-reflecting boundary conditions for truncating unbounded domains are also given.
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1.1 A model problem

We introduce our discretization technique on the half-plane problem for the scalar wave equation with a
cross term in 2-D,

∂2u

∂t2
= ∇ · F, x ≥ 0, 0 ≤ y ≤ 2π, t ≥ 0, (3)

F =


 ux + αuy

uy + αux


 ,

with 2π-periodic solutions in the y-direction, subject to the boundary condition

F · n̂ = ux + αuy = 0, x = 0, 0 ≤ y ≤ 2π, t ≥ 0, when n̂ = (1, 0)T . (4)

Here α is a real constant. Similar to the elastic wave equation, the problem (3)-(4) conserves an energy:

‖ut‖2 + ‖ux‖2 + ‖uy‖2 + 2α(ux, uy) = const.,

where (u, v) is the L2 scalar product and ‖u‖2 = (u, u). We have

‖ux‖2 + ‖uy‖2 + 2α(ux, uy) ≥ (1− |α|)
(
‖ux‖2 + ‖uy‖2

)
> 0, |α| < 1.

Hence the conserved quantity is a norm, and the problem (3)-(4) is well-posed, when |α| < 1. Conversely,
it can be shown that the problem becomes ill-posed for |α| > 1.

We introduce a grid with points xi = (i − 1)h, yj = (j − 1)h, i = 0, 1, 2, . . ., j = 1, 2, . . . , Ny, where
h = 2π/(Ny− 1) is the grid size. We denote a two-dimensional grid function by ui,j(t) = u(xi, yj , t). The
time dependence will be suppressed when the meaning is obvious. We use the usual definitions of divided
difference operators,

Dx
+vi,j =

1

h
(vi+1,j − vi,j), Dx

−vi,j = Dx
+vi−1,j , Dx

0 =
1

2

(
Dx
+ +Dx

−

)
,

and corresponding expressions in the y-direction.
A second order accurate centered spatial discretization of (3) is given by

d2ui,j
dt2

=
(
Dx

−D
x
+ +Dy

−D
y
+ + 2αDx

0D
y
0

)
ui,j , i ≥ 1, 1 ≤ j ≤ Ny − 1. (5)

There are several ways to discretize the boundary condition (4) to second order accuracy. As we shall
see, a good choice is

Dx
0u1,j + αDy

0

(
u2,j + u0,j

2

)
= 0, 1 ≤ j ≤ Ny − 1. (6)

After Fourier-transforming in the y-direction (with dual variable ω), using the boundary condition (6) to
eliminate the ghost point values at i = 0, and introducing the vector notation û = (û1, û2, . . .)

T , we can
write the Fourier-transformed semi-discrete problem in matrix form

h2
d2û

dt2
= (A+B)û, (7)

where

A =




−
(
2 + 4 sin2 ωh2

)
2

1 −
(
2 + 4 sin2 ωh2

)
1

. . .
. . .

. . .


 , B = ıα sin(ωh)




0 2

−1 0 1

. . .
. . .

. . .


 ,
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and ı =
√
−1. We can symmetrize (7) by the diagonal scaling

S =




1/
√
2 0

0 1 0

. . .
. . .

. . .


 , ŵ = Sû, h2

d2ŵ

dt2
= (Ã+ B̃)ŵ, Ã+ B̃ = S(A+B)S−1,

where Ã+ B̃ is self-adjoint. As we shall see in Section 2, the semi-discrete problem is stable if Ã+ B̃ also
is negative definite. Furthermore, when Ã+ B̃ is self-adjoint, it is straight forward to discretize time such
that the fully discrete problem becomes stable and conserves a discrete energy which is a second order
accurate approximation of the conserved energy in the continuous case.

Note that it is not necessary to solve a linear system to update the ghost points. Instead of (6) we
can change the boundary condition to be

Dx
0u1j + αDy

0u1j = 0, 1 ≤ j ≤ Ny − 1, (8)

if we also modify the difference approximation on the boundary by taking the cross-term one-sided in the
direction normal to the boundary,

d2u1,j
dt2

=
(
Dx

−D
x
+ +Dy

−D
y
+ + 2αDx

+D
y
0

)
u1,j , 1 ≤ j ≤ Ny − 1. (9)

After Fourier transforming (9) in the y-direction and eliminating the ghost point by use of (8), we obtain
the same matrix representation as before, showing that the two formulations are equivalent.

2 The elastic wave equation

In Cartesian component form, the system (1) is

ρutt =
∂

∂x
((2µ+ λ)ux + λvy + λwz) +

∂

∂y
(µvx + µuy) +

∂

∂z
(µuz + µwx) + f (x), (10)

ρvtt =
∂

∂x
(µvx + µuy) +

∂

∂y
((2µ+ λ)vy + λux + λwz) +

∂

∂z
(µvz + µwy) + f (y), (11)

ρwtt =
∂

∂x
(µuz + µwx) +

∂

∂y
(µvz + µwy) +

∂

∂z
((2µ+ λ)wz + λux + λvy) + f (z). (12)

In this paper, we consider box-shaped domains: 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c and impose a normal
stress boundary condition at z = 0. In component form, the boundary condition (2) is

µuz + µwx = g(x), (13)

µvz + µwy = g(y), z = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b, t ≥ 0, (14)

(2µ+ λ)wz + λux + λvy = g(z). (15)

For the purpose of discussing the stability properties of our method, we impose homogeneous Dirichlet
conditions at z = c,

u(x, y, c, t) = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b, t ≥ 0, (16)

and periodic boundary conditions in the x- and y-directions. Note that the stability results can be
extended to the case of Dirichlet conditions in the x- and y-directions.

To simplify our notation, we assume zero volume and boundary forcings (f = 0 and g = 0) throughout
sections 2.1-2.3.
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2.1 Spatial discretization

The conclusion from the model problem in Section 1.1 is that a stable second order accurate discretization
of (3)-(4) can be obtained by discretizing the differential equation with centered differences, except for the
cross-terms on the boundary which should be taken one-sided in the direction normal to the boundary.
The resulting approximation will be second order accurate and the ghost points can be updated explicitly
if the tangential derivatives in the boundary conditions are discretized by centered differences along the
boundary. We shall use these principles to define the difference scheme for the three-dimensional elastic
wave equation and proceed by verifying that the resulting approximation is stable and second order
accurate. The underlying ideas are the same as for the model problem, even though the algebra gets
more complicated.

We define a three-dimensional grid with points xi = (i−1)h, yj = (j−1)h, zk = (k−1)h, 0 ≤ i ≤ Nx,
0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz, where h > 0 is the grid size and xNx

= a, yNy
= b, and zNz

= c. Time
is discretized with step size δt > 0 on a grid tn = nδt, n = 0, 1, . . ., and we denote a grid function by
uni,j,k = u(xi, yj , zk, tn). The superscript for time will be surpressed when the meaning is obvious. Apart
from the difference operators already defined, we also introduce

D̃z
0vi,j,k =





Dz
+vi,j,1, k = 1,

Dz
0vi,j,k, k ≥ 2,

and the averaging operators

Ex
1/2(γi,j,k) = γi+1/2,j,k :=

γi+1,j,k + γi,j,k
2

,

Ey
1/2(γi,j,k) = γi,j+1/2,k :=

γi,j+1,k + γi,j,k
2

,

Ez
1/2(γi,j,k) = γi,j,k+1/2 :=

γi,j,k+1 + γi,j,k
2

.

We form the spatially discrete equations at the grid points 1 ≤ i ≤ Nx−1, 1 ≤ j ≤ Ny−1, 1 ≤ k ≤ Nz−1,

ρ
d2u

dt2
=Dx

−

(
Ex
1/2(2µ+ λ)Dx

+u
)
+Dy

−

(
Ey
1/2(µ)D

y
+u
)
+Dz

−

(
Ez
1/2(µ)D

z
+u
)

+Dx
0

(
λDy

0v + λD̃z
0w
)
+Dy

0 (µD
x
0v) + D̃z

0 (µD
x
0w) =: L(u)(u, v, w), (17)

ρ
d2v

dt2
=Dx

−

(
Ex
1/2(µ)D

x
+v
)
+Dy

−

(
Ey
1/2(2µ+ λ)Dy

+v
)
+Dz

−

(
Ez
1/2(µ)D

z
+v
)

+Dx
0 (µD

y
0u) +Dy

0

(
λDx

0u+ λD̃z
0w
)
+ D̃z

0 (µD
y
0w) =: L(v)(u, v, w), (18)

ρ
d2w

dt2
=Dx

−

(
Ex
1/2(µ)D

x
+w
)
+Dy

−

(
Ey
1/2(µ)D

y
+w
)
+Dz

−

(
Ez
1/2(2µ+ λ)Dz

+w
)

+ Dx
0

(
µD̃z

0u
)
+Dy

0

(
µD̃z

0v
)
+ D̃z

0 (λD
x
0u+ λDy

0v) =: L(w)(u, v, w), (19)

where grid point indices have been suppressed to improve readability. The free surface boundary condi-
tions (13)-(15) are discretized by

1

2

(
µi,j,3/2D

z
+ui,j,1 + µi,j,1/2D

z
+ui,j,0

)
+ µi,j,1D

x
0wi,j,1 = 0, (20)

1

2

(
µi,j,3/2D

z
+vi,j,1 + µi,j,1/2D

z
+vi,j,0

)
+ µi,j,1D

y
0wi,j,1 = 0, (21)

1

2

(
(2µ+ λ)i,j,3/2D

z
+wi,j,1 + (2µ+ λ)i,j,1/2D

z
+wi,j,0

)
+ λi,j,1 (D

x
0ui,j,1 +Dy

0vi,j,1) = 0, (22)
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for 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1. The Dirichlet boundary condition (16) is discretized by

ui,j,Nz
= 0, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny. (23)

The discrete counterpart of the periodic boundary conditions are

uNx,j,k = u1,j,k, u0,j,k = uNx−1,j,k, (24)

ui,Ny,k = ui,1,k, ui,0,k = ui,Ny−1,k, (25)

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz.
In (17)–(19), z-derivatives in the cross terms are made one sided at the grid line k = 1. Neverthe-

less, the semi-discrete approximation is a second order accurate approximation as demonstrated in the
following theorem.

Theorem 1 The semi-discrete scheme (17)-(19) subject to the boundary conditions (20)-(25) is a second
order accurate approximation of the continuous equation (10)-(12) subject to the boundary conditions
(13)-(16).

Proof: See Appendix A.
We will show that the above scheme satisfies an energy estimate. The energy estimate relies on the

spatial discretization being self-adjoint and negative definite (elliptic). These properties are stated in
three lemmas below. The main stability estimate is stated after the lemmas.

The diagonal scaling S which was used to symmetrize the spatial discretization for the model problem
in Section 1.1 is related to a weighted scalar product for the unscaled problem. For the three-dimensional
elastic wave equation, the appropriate scalar product and norm are

(w, v)h = h2
Nx−1∑

i=1

Ny−1∑

j=1

(
h

2
wi,j,1vi,j,1 + h

Nz−1∑

k=2

wi,j,kvi,j,k

)
, ‖v‖2h = (v, v)h.

The self-adjoint property is expressed in

Lemma 1 For all real-valued grid functions (u0, v0, w0), (u1, v1, w1) which satisfy the discrete boundary
conditions (20)-(25), the spatial operator (L(u), L(v), L(w)) is self-adjoint, i.e.,

(
u0, L(u)(u1, v1, w1)

)
h
+
(
v0, L(v)(u1, v1, w1)

)
h
+
(
w0, L(w)(u1, v1, w1)

)
h
=

(
u1, L(u)(u0, v0, w0)

)
h
+
(
v1, L(v)(u0, v0, w0)

)
h
+
(
w1, L(w)(u0, v0, w0)

)
h
. (26)

Proof: See Appendix B.

From the self-adjoint property it follows that there exists a conserved quantity:

Lemma 2 All real-valued solutions (u, v, w) of the semi-discrete scheme (17)-(19) subject to the boundary
conditions (20)-(25), satisfy

‖ρ1/2ut‖2h+‖ρ1/2vt‖2h+‖ρ1/2wt‖2h−(u, L(u)(u, v, w))h−(v, L(v)(u, v, w))h−(w,L(w)(u, v, w))h = C, (27)

where C is a constant which depends on the initial data.
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Proof: Lemma 1 gives

1

2

d

dt

(
‖ρ1/2ut‖2h + ‖ρ1/2vt‖2h + ‖ρ1/2wt‖2h

)
=

(ut, L
(u)(u, v, w))h + (vt, L

(v)(u, v, w))h + (wt, L
(w)(u, v, w))h =

1

2

(
(ut, L

(u)(u, v, w))h + (vt, L
(v)(u, v, w))h + (wt, L

(w)(u, v, w))h

)

+
1

2

(
(u, L(u)(ut, vt, wt))h + (v, L(v)(ut, vt, wt))h + (w,L(w)(ut, vt, wt))h

)
=

1

2

d

dt

(
(u, L(u)(u, v, w))h + (v, L(v)(u, v, w))h + (w,L(w)(u, v, w))h

)
.

Integrating the above relation in time starting at t = 0 gives (27) and shows that the constant C depends
on the initial data.

To prove that the semi-discrete scheme is stable we need to show that the conserved quantity in (27) is
a norm, i.e., we need to show that the spatial operator is negative definite. In particular, we need to show

that the sum of the mixed terms in (u, L(u))h, (v, L
(v))h, and (w,L(w))h, (such as

(
Dx
0w, µD̃

z
0u
)
h
), is

dominated by the sum of the strictly positive terms (such as
(
Dx
+w,E

x
1/2(µ)D

x
+w
)
h
when µ > 0). This is

straight forward in the corresponding continuous case and leads to the well known formula for the elastic
energy. What makes the discrete case more challenging is that all derivatives in the strictly positive terms
are discretized by operators such as Dx

+D
x
−, while they are discretized by centered differences (such as

Dx
0D

y
0) in all mixed terms. We have

Lemma 3 For all real valued grid functions (u, v, w) which satisfy the boundary conditions (20)-(25),
we have

(u, L(u)(u, v, w))h + (v, L(v)(u, v, w))h + (w,L(w)(u, v, w))h = −2‖(Ex
1/2(µ))

1/2Dx
+u‖2h

− 2‖(Ey
1/2(µ))

1/2Dy
+v‖2h − 2‖(Ez

1/2(µ))
1/2Dz

+w‖2h − ‖λ1/2(Dx
0u+Dy

0v + D̃z
0w)‖2h

− ‖µ1/2(Dx
0u+Dy

0v)‖2h − ‖µ1/2(D̃z
0v +Dy

0w)‖2h − ‖µ1/2(D̃z
0u+Dx

0w)‖2h −
h2

4
R−B. (28)

The operator
(
L(u), L(v), L(w)

)
is negative definite when µ > 0 and λ > 0. It is semi-definite when µ = 0

and λ > 0. The remainder term R and the boundary term B are both positive. They are given by

R = ‖λ1/2Dx
+D

x
−u‖2h + ‖µ1/2Dy

+D
y
−u‖2h + ‖µ1/2Dz

+D
z
−u‖2hr

+ ‖µ1/2Dx
+D

x
−v‖2h + ‖λ1/2Dy

+D
y
−v‖2h + ‖µ1/2Dz

+D
z
−v‖2hr

+ ‖µ1/2Dx
+D

x
−w‖2h + ‖µ1/2Dy

+D
y
−w‖2h + ‖λ1/2Dz

+D
z
−w‖2hr. (29)

and

B = h

Ny∑

j=1

Nx∑

i=1

(λi,j,Nz

2
w2i,j,Nz−1 +

µi,j,Nz

2
(u2i,j,Nz−1 + v2i,j,Nz−1) + h2µi,j,3/2(D

z
+wi,j,1)

2
)
. (30)

Note: The reduced scalar product (u, v)hr is similar to the standard scalar product, except that it
starts the summation from k = 2,

(w, v)hr = h3
Nx−1∑

i=1

Ny−1∑

j=1

Nz−1∑

k=2

wi,j,kvi,j,k, ‖v‖2hr = (v, v)hr.
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Proof: The identity (28) is derived in Appendix C. All terms on the right hand side of (28) are
non-positive when the functions µ and λ are non-negative. Therefore the operator is at least negative
semi-definite. Negative definiteness is proved by showing that

(u, L(u)(u, v, w))h + (v, L(v)(u, v, w))h + (w,L(w)(u, v, w))h = 0 (31)

implies ui,j,k = 0, vi,j,k = 0, and wi,j,k = 0 at all grid points.
Assume that µi,j,k > 0 and λi,j,k > 0 for all i, j, k, and that (31) holds. The right hand side of (28) is

a sum of non-positive terms. Therefore, each term must be zero to make the sum zero. Hence the third
scalar product term on the right hand side of (28) gives that

Dz
+wi,j,k = 0, 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ Nz − 1.

Together with the boundary condition wi,j,Nz
= 0, this gives

0 = wi,j,Nz
= wi,j,Nz−1 = . . . = wi,j,1

Thus wi,j,k = 0 everywhere, except possibly at k = 0. Next we show that ui,j,k = 0 for all i, j, k except
possibly for k = 0. The seventh scalar product term on the right hand side of (28) gives

D̃z
0ui,j,k +Dx

0wi,j,k = 0, 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ Nz − 1. (32)

Because wi,j,k = 0, (32) gives

ui,j,Nz
= ui,j,Nz−2 = ui,j,Nz−4 = . . . (33)

ui,j,Nz−1 = ui,j,Nz−3 = ui,j,Nz−5 = . . . . (34)

The boundary term B contains u2i,j,Nz−1
which therefore must be zero. Hence, (33) and (34) together

with the boundary condition ui,j,Nz
= 0, give

0 = ui,j,Nz
= ui,j,Nz−1 = . . . = ui,j,1.

We have shown that ui,j,k = 0 for all i, j, k except possibly for k = 0. The property vi,j,k = 0, except
possibly for k = 0, follows in exactly the same way as for ui,j,k by studying the sixth term on the right
hand side of (28). The possibilities ui,j,0 6= 0, vi,j,0 6= 0, or wi,j,0 6= 0 remain. However, when (u, v, w)
is zero for 1 ≤ k ≤ Nz, the boundary conditions (20)–(22) give that ui,j,0 = vi,j,0 = wi,j,0 = 0. We have
now proved that the operator (L(u), L(v), L(w)) is negative definite when µ and λ are positive functions.

If µ = 0 and λ > 0, the operator has a non-trivial null-space. Take for example ui,j,k = fj,k,
vi,j,k = gi,k, and wi,j,k = 0 with fj,k, gi,k satisfying fj,Nz

= gi,Nz
= 0 and periodic in the j- and i-

directions respectively, but otherwise arbitrary. Because µ = 0, these functions satisfy the free surface
boundary conditions (20)–(22). It is an easy exercise to show that these functions make (28) equal to
zero when µ = 0 everywhere. Hence the operator (L(u), L(v), L(w)) is negative semi-definite when µ = 0
and λ > 0.

The findings in Lemmas 1–3 are summarized in the following main theorem, showing that the semi-discrete
problem is well-posed.

Theorem 2 The solution of the semi-discrete scheme (17)-(19) subject to the boundary conditions (20)-
(25) satisfies

‖ρ1/2ut‖2h+‖ρ1/2vt‖2h+‖ρ1/2wt‖2h− (u, L(u)(u, v, w))h− (v, L(v)(u, v, w))h− (w,L(w)(u, v, w))h = C,

where C is a constant that depends on the initial data. The quantity

−(u, L(u)(u, v, w))h − (v, L(v)(u, v, w))h − (w,L(w)(u, v, w))h

is positive definite when µ > 0 and λ > 0, and is therefore a norm.
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2.2 Fully discrete equations

Following the theory in [16], we discretize (17)-(19) in time according to

ρ

(
un+1 − 2un + un−1

δ2t

)
= L(u)(un, vn, wn), (35)

ρ

(
vn+1 − 2vn + vn−1

δ2t

)
= L(v)(un, vn, wn), (36)

ρ

(
wn+1 − 2wn + wn−1

δ2t

)
= L(w)(un, vn, wn). (37)

To simplify the notation, we introduce the weighted ρ-norm

(w, v)ρ = h2
Nx−1∑

i=1

Ny−1∑

j=1

(
h

2
ρi,j,1wi,j,1vi,j,1 + h

Nz−1∑

k=2

ρi,j,kwi,j,kvi,j,k

)
, ‖v‖2ρ = (v, v)ρ .

Trivial calculations give (
w, ρ−1v

)
ρ
= (w, v)h . (38)

To show that the fully discrete scheme is energy conserving, we consider the quantity

Ce(tn+1) =
∥∥Dt

+u
n
∥∥2
ρ
+
∥∥Dt

+v
n
∥∥2
ρ
+
∥∥Dt

+w
n
∥∥2
ρ
−
(
un+1, ρ−1L(u)(un, vn, wn)

)
ρ

−
(
vn+1, ρ−1L(v)(un, vn, wn)

)
ρ
−
(
wn+1, ρ−1L(w)(un, vn, wn)

)
ρ

(39)

=
∥∥Dt

+u
n
∥∥2
ρ
+
∥∥Dt

+v
n
∥∥2
ρ
+
∥∥Dt

+w
n
∥∥2
ρ

−
(
un+1, Dt

+D
t
−u

n
)
ρ
−
(
vn+1, Dt

+D
t
−v

n
)
ρ
−
(
wn+1, Dt

+D
t
−w

n
)
ρ
.

We have the following energy conservation result for the difference scheme.

Theorem 3 The solution computed by the difference scheme (35)–(37) together with the boundary con-
ditions (20)–(25) satsifies

Ce(tn+1) = Ce(tn),

i.e., Ce(tn) is a conserved quantity for the fully discrete scheme.

Proof: Expanding the square in the term ||Dt
+u

n||2ρ (and similarly for v and w) gives the identity,

δ2tCe(tn+1) = ‖un+1‖2ρ + ‖un‖2ρ −
(
un+1, 2un + δ2t ρ

−1L(u)(un, vn, wn)
)
ρ
+

‖vn+1‖2ρ + ‖vn‖2ρ −
(
vn+1, 2vn + δ2t ρ

−1L(v)(un, vn, wn)
)
ρ
+

‖wn+1‖2ρ + ‖wn‖2ρ −
(
wn+1, 2wn + δ2t ρ

−1L(w)(un, vn, wn)
)
ρ
. (40)

We have,
un+1 + un−1 = 2un + δ2t ρ

−1L(u)(un, vn, wn),

9



and corresponding expressions for v and w. Hence,

δ2tCe(tn+1) = ‖un+1‖2ρ + ‖un‖2ρ −
(
un+1, un+1 + un−1

)
ρ
+ ‖vn+1‖2ρ + ‖vn‖2ρ−(

vn+1, vn+1 + vn−1
)
ρ
+ ‖wn+1‖2ρ + ‖wn‖2ρ −

(
wn+1, wn+1 + wn−1

)
ρ

= ‖un‖2ρ + ‖un−1‖2ρ −
(
un−1, 2un + δ2t ρ

−1L(u)(un, vn, wn)
)
ρ
+

‖vn‖2ρ + ‖vn−1‖2ρ −
(
vn−1, 2vn + δ2t ρ

−1L(v)(un, vn, wn)
)
ρ
+

‖wn‖2ρ + ‖wn−1‖2ρ −
(
wn−1, 2wn + δ2t ρ

−1L(w)(un, vn, wn)
)
ρ
.

The relation (38) gives

(
un−1, δ2t ρ

−1L(u)(un, vn, wn)
)
ρ
=
(
un−1, δ2tL

(u)(un, vn, wn)
)
h
,

so Lemma 1 yields

(
un−1, δ2t ρ

−1L(u)(un, vn, wn)
)
ρ
+
(
vn−1, δ2t ρ

−1L(v)(un, vn, wn)
)
ρ
+

(
wn−1, δ2t ρ

−1L(w)(un, vn, wn)
)
ρ
=

(
un, δ2t ρ

−1L(u)(un−1, vn−1, wn−1)
)
ρ
+
(
vn, δ2t ρ

−1L(v)(un−1, vn−1, wn−1)
)
ρ
+

(
wn, δ2t ρ

−1L(w)(un−1, vn−1, wn−1)
)
ρ
. (41)

We conclude that
Ce(tn+1) = Ce(tn),

i.e., Ce(tn) is a conserved quantity for the fully discrete scheme.

To obtain an energy estimate we need to show that Ce > 0. This was done in [16] for approximations
of the scalar wave equation. We here perform a similar analysis for the scheme (35)–(37). To make the
presentation more compact, we introduce the vector notation

(un+1,L(un))h =: (un+1, L(u)(un, vn, wn))h+(vn+1, L(v)(un, vn, wn))h+(wn+1, L(w)(un, vn, wn))h. (42)

As we shall see below, it is natural to study the scaled eigenvalue problem

ρ−1L(w) = ζw, (43)

where w satisfies the boundary conditions (20)–(25). We know from Lemma 1 that L is self-adjoint with
respect to (·, ·)h. Therefore, ρ−1L is self-adjoint with respect to (·, ·)ρ because

(v, ρ−1L(w))ρ = (v,L(w))h = (L(v),w)h = (ρ−1L(v),w)ρ.

Hence, the eigenvalues of (43) are real and Lemma 3 implies that they are negative, i.e.,

−max
m
|ζm|‖w‖2ρ ≤ (w, ρ−1L(w))ρ ≤ −min

m
|ζm|‖w‖2ρ. (44)

We have the following stability result.
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Theorem 4 If the eigenvalues ζm of (43) satisfy the CFL-condition

δ2t
4

max
m
|ζm| < 1, (45)

then the conserved quantity Ce(tn+1) is a norm which is bounded by

minm |ζm|
4

‖un+1 + un‖2ρ ≤ Ce(tn+1) ≤ ‖Dt
+un‖2ρ +

maxm |ζm|
4

‖un+1 + un‖2ρ. (46)

If the time-step satisfies the (slightly) stricter condition

δ2t
4
(max

m
|ζm|+min

m
|ζm|) < 1, (47)

the solution satisfies the energy estimate

‖un+1‖2ρ + ‖un‖2ρ ≤
2

minm |ζm|
Ce(t0). (48)

Proof: Using the vector notation (42), we can write the conserved quantity (39) as

Ce(tn+1) =
∥∥Dt

+un
∥∥2
ρ
−
(
un+1,L(un)

)
h
.

Because the operator L is self-adjoint (Lemma 1),

(un+1,L(un))h =
1

2
(un+1,L(un))h +

1

2
(un,L(un+1))h.

Furthermore,

(un+1 + un,L(un+1 + un))h − (un+1 − un,L(un+1 − un))h = 2(un,L(un+1))h + 2(un+1,L(un))h,

and (w,L(w))h = (w, ρ−1L(w))ρ. Hence,

δ2tCe(tn+1) = ||un+1−un||2ρ−
δ2t
4
(un+1+un, ρ−1L(un+1+un))ρ+

δ2t
4
(un+1−un, ρ−1L(un+1−un))ρ. (49)

The eigenvalue bound (44) gives

δ2tCe(tn+1) ≥
(
1− δ2t

4
max
m
|ζm|

)
‖un+1 − un‖2ρ +

δ2t
4

min
m
|ζm|‖un+1 + un‖2ρ, (50)

δ2tCe(tn+1) ≤
(
1− δ2t

4
min
m
|ζm|

)
‖un+1 − un‖2ρ +

δ2t
4

max
m
|ζm|‖un+1 + un‖2ρ. (51)

Therefore, Ce ≥ minm |ζm|‖un+1 + un‖2ρ/4 when

1− δ2t
4

max
m
|ζm| > 0,

i.e., when the CFL-condition (45) is satisfied. The estimate (51) gives the upper bound in (46).
To show (48), we use the estimate

‖un+1‖2ρ + ‖un‖2ρ =
1

4
‖(un+1 − un) + (un+1 + un)‖2ρ +

1

4
‖(un − un+1) + (un + un+1)‖2ρ

≤ 1

2
‖un+1 − un‖2ρ +

1

2
‖un+1 + un‖2ρ.

If the condition (47) is satisfied, we have 1− δ2t maxm |ζm|/4 > δ2t minm |ζm|/4, so (50) gives

Ce(tn+1) ≥
1

4
min
m
|ζm|

(
||un+1 − un||2ρ + ||un+1 + un||2ρ

)
≥ 1

2
min
m
|ζm|

(
‖un+1‖2ρ + ‖un‖2ρ

)
.

Furthermore, Ce(tn+1) = Ce(t0), which proves the energy estimate (48).
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Figure 1: Magnitude of the two dimensional discrete Fourier transform of w at t = 1.78, along the
z = 0 (stress free) surface calculated with a time step allowed by the von Neumann analysis, which
underestimates the largest eigenvalue of the spatial operator. In this calculation, ρ = 1, µ = 1, λ = 79,
h = 0.04, δt = 0.95δtvN , and the initial data was given by (69). Note that all energy is concentrated
around the wave numbers ωxh ≈ ωyh ≈ 2π/3.

2.3 Time step restrictions

In the case of constant ρ, µ, λ, and periodic boundary conditions in all three directions, a von Neumann
analysis gives the maximum eigenvalue

ζvN =





− 4

h2
4µ+ λ

ρ
, λ < 2µ,

− 9

2h2
(2µ+ λ)2

ρ(µ+ λ)
, λ ≥ 2µ.

(52)

If ζvN is used to estimate the largest eigenvalue maxm |ζm|, we get the time step restriction δt < δtvN ,
where

δtvN =





h

√
ρ

4µ+ λ
=

h√
c2p + 2c2s

, cp < 2cs,

√
8h

3

√
ρ(µ+ λ)

2µ+ λ
=

√
8h

3

√
c2p − c2s

c2p
, cp ≥ 2cs.

(53)

Unfortunately, numerical simulations using a time-step smaller but close to the limit (53) become unstable
when a stress free boundary is imposed and the ratio ν = cp/cs is large, see Figure 1.

To estimate how the free-surface boundary condition modifies the time step restriction, we study the
stability of the discrete half-plane problem with constant values of ρ, µ, λ. In this approximation, we
assume a 2π-periodic solution in the x- and y-directions, expand the grid in the z-direction by taking
Nz →∞ and replace the Dirichlet boundary condition (23) by

lim
k→∞

|uni,j,k| = 0. (54)
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Several stability definitions for difference approximations are possible and we refer to [9] for a discussion.
Here we use a normal-mode approach and define the half-plane problem to be stable if there are no
solutions of the form

u(xi, yj , zk, tn) = χneı(ωxxi+ωyyj)ûk,

∞∑

k=1

|ûk|2 <∞, |χ| > 1, (55)

where ı =
√
−1. For simplicity we assume that Nx = Ny is odd. Then, ωx, ωy = 0,±1,±2, . . . ,±(Nx −

1)/2.
It is straight forward to perform the stability analysis if we first re-write our scheme (17)-(19) into

an equivalent form, where the one-sided discretization of the cross-derivatives at k = 1 are replaced by
the centered discretization used for k ≥ 2, i.e., replace D̃z

0 by Dz
0 in (17)-(19). We arrive at an equivalent

problem by introducing compensating terms in the boundary conditions, see Appendix A. In the case of
constant coefficients, the compensated stress-free boundary conditions are

Dz
0ui,j,1 +Dx

0

(
wi,j,1 + (ν2 − 1)

h2

4
Dz
+D

z
−wi,j,1

)
= 0, (56)

Dz
0vi,j,1 +Dy

0

(
wi,j,1 + (ν2 − 1)

h2

4
Dz
+D

z
−wi,j,1

)
= 0, (57)

ν2Dz
0wi,j,1 +Dx

0

(
(ν2 − 2)ui,j,1 + (ν2 − 1)

h2

4
Dz
+D

z
−ui,j,1

)
+

Dy
0

(
(ν2 − 2)vi,j,1 + (ν2 − 1)

h2

4
Dz
+D

z
−vi,j,1

)
= 0. (58)

After inserting the ansatz (55) into the modified version of (17)-(19), we arrive at the eigenvalue
problem

ζhp
c2s

ûk :=
χ− 2 + χ−1

δ2t c
2
s

ûk = − 4

h2

(
sin2

ξ

2
+ sin2

φ

2

)
ûk +Dz

+D
z
−ûk

+ (ν2 − 1)




− 4
h2 sin

2 ξ
2 − 1

h2 sin ξ sinφ
ı
h sin ξDz

0

− 1
h2 sin ξ sinφ − 4

h2 sin
2 φ
2

ı
h sinφDz

0

ı
h sin ξDz

0
ı
h sinφDz

0 Dz
+D

z
−


 ûk, (59)

where ξ = ωxh and φ = ωyh satisfy −π ≤ ξ ≤ π, −π ≤ φ ≤ π. Inserting the ansatz (55) into the
boundary conditions (56)-(58) gives

Dz
0 û1 +

ı

h
sin ξ

(
ŵ1 + (ν2 − 1)

h2

4
Dz
+D

z
−ŵ1

)
= 0, (60)

Dz
0 v̂1 +

ı

h
sinφ

(
ŵ1 + (ν2 − 1)

h2

4
Dz
+D

z
−ŵ1

)
= 0, (61)

ν2Dz
0ŵ1 +

ı

h
sin ξ

(
(ν2 − 2)û1 + (ν2 − 1)

h2

4
Dz
+D

z
−û1

)

+
ı

h
sinφ

(
(ν2 − 2)v̂1 + (ν2 − 1)

h2

4
Dz
+D

z
−v̂1

)
= 0. (62)

The eigenvalue problem (59) can be solved using the ansatz

ûk = Uκk, where |κ| < 1. (63)
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Lemma 1 is straight forward to generalize to the half-plane problem, so the spatial operator is self-
adjoint, and the generalization of Lemma 3 shows that the spatial operator is negative semi-definite. All
eigenvalues ζhp are therefore real and non-positive.

Next we study the relation between ζhp and χ in (59). The roots of the quadratic equation χ2 − (2−
|ζhp|δ2t )χ+ 1 = 0 are given by

χ1,2 = 1− |ζhp|δ
2
t

2
±
√
∆, ∆ = −|ζhp|δ2t

(
1− |ζhp|δ

2
t

4

)
.

If ∆ < 0, the roots are complex conjugates. Since the product of the roots equals one, both roots satisfy
|χ1,2| = 1. If ∆ = 0, χ1,2 = −1 is a double root. Finally, if ∆ > 0, both roots are real. One root will
have magnitude greater than one and one less than one. Hence, the condition |χ| > 1 in the normal mode
ansatz (55) is equivalent to ∆ > 0. Conversely, there are no solutions of the form (55) if all eigenvalues
ζhp satisfy

−|ζhp|δ2t
(
1− |ζhp|δ

2
t

4

)
≤ 0, i.e.,

δ2t
4
|ζhp| ≤ 1.

Hence the normal mode stability definition leads to the same type of time step restriction as in the energy
method (Theorem 4), and we can use the most negative eigenvalue ζhp to approximate the eigenvalue in
(45). This approximation will lead to a more restrictive time step limitation than in the von Neumann
analysis if there are any eigenvalues ζhp such that

|ζhp| > |ζvN |.

Inserting (63) into (59) gives



−4(ν2 sin2 ξ2 + sin2 φ2 )+

κ− 2 + κ−1 − ζ̃
−(ν2 − 1) sin ξ sinφ (ν2 − 1)ı sin ξ(κ− κ−1)

−(ν2 − 1) sin ξ sinφ
−4(sin2 ξ2 + ν2 sin2 φ2 )+

κ− 2 + κ−1 − ζ̃
(ν2 − 1)ı sinφ(κ− κ−1)

(ν2 − 1)ı sin ξ(κ− κ−1) (ν2 − 1)ı sinφ(κ− κ−1)
−4(sin2 ξ2 + sin2 φ2 )+

ν2(κ− 2 + κ−1)− ζ̃




U = 0, (64)

where ζ̃ = ζhph
2/c2s. Multiply (64) by κ and let

P (ζ̃, κ, ξ, φ, ν) = 0, (65)

be the corresponding characteristic equation. Here, P is a cubic polynomial in ζ̃ and a polynomial of
degree six in κ. For fixed ν, ξ, and φ there are six roots κ for each ζ̃. The following Lemma is a standard
result, see e.g., [10], which we here formulate for our discretization of the elastic wave equation.

Lemma 4 The characteristic equation P = 0 has six roots κl. For ζ̃ < −|ζ̃vN | = −|ζvN |h2/c2s, three of
these roots have |κ| < 1 and three have |κ| > 1.

Proof: A polynomial of degree six has six roots (counting multiplicity). If any κ is such that |κ| = 1,
then κ = eiα for some real α, and (65) becomes identical to the relation obtained in the von Neumann
analysis of the fully periodic problem. We know that there are no eigenvalues with magnitude greater
than |ζ̃vN | in this case. Therefore there can be no κ on the unit circle when ζ̃ < −|ζ̃vN |. Secondly, take
φ = ξ = 0. It is not hard to see that the characteristic equation P = 0 becomes

[
κ2 − (2 + ζ̃)κ+ 1

] [
κ2 − (2 + ζ̃)κ+ 1

] [
κ2 − (2 +

ζ̃

ν2
)κ+ 1

]
= 0.
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Therefore the six roots κ satisfy the pairwise relations κ1κ4 = 1, κ2κ5 = 1, and κ3κ6 = 1. Since no root
can be on the unit circle when ζ̃ < −|ζ̃vN |, there must be three roots inside the unit circle, and three
roots outside of it. Furthermore, the roots κ are smooth functions of φ, ξ, ν, and ζ̃. Because they can
not move across the unit circle when ζ̃ < −|ζ̃vN |, the roots are always divided into these two groups for
all values of φ, ξ, ν, and for any ζ̃ such that ζ̃ < −|ζ̃vN |.

It follows from Lemma 4 that the general solution of (59) subject to the boundary condition (54) is

ûk = C1U1κ
k
1 + C2U2κ

k
2 + C3U3κ

k
3 , |κl| < 1, l = 1, 2, 3. (66)

where Ul are the eigenvectors corresponding to κl, l = 1, 2, 3 respectively. For each ζ̃ < −|ζ̃vN |, Ul is
the null-vector of the linear system (64) when the root κl is substituted for κ.

Inserting the general solution (66) into the stress-free boundary conditions (60)–(62) leads to a ho-
mogeneous linear system for the coefficients C1, C2 and C3:

A




C1

C2

C3


 = 0, (67)

where A = A(ζ̃, ξ, φ, ν) is a three by three matrix. There are non-trivial solutions of (67) if and only if
detA = 0. If (67) has a non-trivial solution (C1, C2, C3)

T for some ζ̃, then the corresponding ζhp is an
eigenvalue of (59).

Since the algebra involved in forming detA is rather complicated, we have resolved to calculating
the roots of detA = 0 numerically. The determinant depends on four parameters, where ν = cp/cs is a
material constant and the angles ξ, φ satisfy −π ≤ ξ, φ ≤ π. For each fixed ν, we need to find the angles
ξ, φ that give the most negative solution ζ̃ of detA = 0. A straight forward approach is to discretize ξ,
φ on a fine mesh:

ξp = −π + p
2π

Nξ
, p = 0, 1, 2, . . . , Nξ,

φq = −π + q
2π

Nφ
, q = 0, 1, 2, . . . , Nφ.

At each mesh point detA is a complex-valued function of the real variable ζ̃ and we only need to consider
ζ̃ < −|ζ̃vN |, since only such eigenvalues can restrict the time step beyond the von Neumann limit. At
each point (ξp, ηq), we apply a numerical root finding routine to locate the most negative solution ζ̃p,q of

detA = 0. We then use minp,q ζ̃p,q as an approximation of the most negative solution ζ̃ corresponding to
ν. The fundamental operation when applying a numerical root finding routine is to evaluate detA at a
given value of ζ̃, which can be broken down into the following steps:

1. Solve the characteristic equation (65) for κ. Select the three roots with |κl| < 1;

2. Find the three eigenvectors Ul by solving (64) for each κl, l = 1, 2, 3.;

3. Form the matrix A by inserting (66) into (60)–(62);

4. Compute the determinant of A.

Using the numerical root finding procedure outlined above, we calculated the ratio between the largest
stable time step for the half-plane problem with a stress free boundary, and the largest stable time step for
the fully periodic case, see Figure 2. The numerical root finding procedure located the largest eigenvalue
|ζhp| at φ = ξ = 2π/3. Hence, the spatial frequencies ωxh = ωyh = 2π/3 should grow the fastest if the
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Figure 2: Ratio between the maximum stable time step for the half-plane problem with a free surface,
and that of the fully periodic problem. The line with boxes corresponds to the three-dimensional problem
and the two-dimensional case is shown with a solid line.

time-step exceeds the stability limit and ν is large. This prediction was confirmed by spatially Fourier
transforming an unstable numerical solution, see Figure 1.

For large ν, the solutions of detA = 0 corresponding to the largest |ζ̃| were numerically found to
occur when κ1 is real with −1 < κ1 < 0 and κ2 = κ̄3 with −1 < Re(κ2,3) < 0. Thus, the eigenfunction
corresponding to the largest eigenvalue oscillates in the z-direction with two different frequencies; the
fastest frequency on the mesh: |κ1|k(−1)k and more slowly: |κ2|k(exp(±ı arg κ2))k, where arg(κ2) ≈ 2π/3
for large ν. This boundary layer behavior has been observed in numerical solutions when the time step
exceeds the stability limit.

Note that the limitations imposed on the time step by the stress free boundary are very moderate
even for extreme ν values (most solid materials occuring in nature have cp/cs ≤ 3). As ν gets large,
the largest stable time step for the half-plane problem tends to a factor exceeding 0.91 of that for the
fully periodic problem. Our practical experience with the time-stepping algorithm on bounded domains
with variable coefficients and a free surface boundary condition on one side indicates that it is stable
when the half-plane problem with constant coefficients is stable, using the smallest time step obtained
by evaluating cp and cs at all grid points. Hence, we can handle all values of cp/cs by reducing the time
step by less than 9% compared to the von Neumann value. This makes our method practically useful for
all isotropic materials.

The additional time-step restriction due to the free-surface boundary condition indicates that there
are numerical surface waves which travel faster than any volume waves on the grid. In the continuous
problem, Rayleigh (surface) waves always have a phase velocity bounded by cs. Hence, it is likely that
the numerical phase velocity for Rayleigh waves will depend on the grid resolution in terms of the number
of grid points per wave length. Numerical experiments along these lines are presented in Section 4.1.

We also analyzed the two-dimensional version of the scheme by assuming that the solution does not
depend on y. Here a von Neumann analysis of the doubly periodic case (ρ, µ, and λ constant) gives a
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time step restriction

δt <
h
√
ρ√

3µ+ λ
=

h√
c2p + c2s

. (68)

The stability restriction on the time step with the free surface boundary condition can be obtained using
the above root finding procedure with φ = 0. The results are given in Figure 2 together with the three-
dimensional case. When ν becomes large, the largest stable time step for the half-plane problem tends to
a factor exceeding 0.94 of that for the fully periodic case (i.e., 6% smaller). As in the three-dimensional
problem, the largest eigenvalue occurs for the spatial frequency ωxh = 2π/3.

2.4 Numerical tests of the scheme

In order to test the implementation of our method we first ran a number of computations without forcing
with decreasing grid size h to evaluate the discrete energy Ce as function of time. We took µ = 0.16,
λ = 0.49, ρ = 1, and started the computations with the initial data in spherical coordinates:

U0(r) = ∇
(
P10(r)

r

)
, U1(r) = −cp∇

(
P ′
10(r)

r

)
, r =

√
(x− 2)2 + (y − 1.5)2 + (z − 1.5)2, (69)

where P10(ξ) is the four times continously differentiable function

P10(ξ) =





0, ξ <= 0,

1024ξ5
(
1− 5ξ + 10ξ2 − 10ξ3 + 5ξ4 − ξ5

)
, 0 < ξ < 1,

0, ξ ≥ 1.

(70)

(We note in passing that u(r, t) = ∇(P10(r − cpt)/r) is an analytic solution of the free space problem.)
We impose a stress-free boundary condition at z = 0 and enforce zero displacement conditions on all
other boundaries. The size of the computational domain was a = 4, b = 3, and c = 3. Since there is
no forcing, the discrete energy Ce(tn) should remain constant. The energy in the continuous problem is
often decomposed into its kinematic and potential components,

E(t) = K(t) + U(t),

where

K(t) =
1

2

∫

Ω

ρ(u2t + v2t + w2t ) dΩ,

U(t) =
1

2

∫

Ω

λ(ux + vy + wz)
2 + 2µ(u2x + v2y + w2z) + µ

(
(uy + vx)

2 + (uz + wx)
2 + (vz + wy)

2
)
dΩ.

In the absence of forcing, E(t) = const. By dividing (49) by δ2t it is straight forward to see that

Ce(tn+1) = 2E(tn+1/2) +O(h2).

Hence, the discrete energy Ce should not only be conserved in time, but its value should also converge
to 2E(t) as the grid is refined. Both these properties are confirmed by our calculations, see Figure 3.

As a second test of our implementation, we check the order of accuracy of the scheme using the method
of analytical solutions (also known as twilight-zone forcing [3]). The idea is to construct forcing functions
f and g so that the solution of the test problem becomes a known function utrue(x, t). We then solve the
test problem using our implementation of the method and compared our numerical results to the known
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Figure 3: Time evolution of the relative error in the discrete energy (Ce(t) − 2E(t))/2E(t) for different
grid sizes. The discrete energy is conserved to within round off errors for all cases. As can be seen
the discrete energy converges towards the continuous value at the expected O(h2) rate. Here, h =
0.04 (∗), 0.02 (·), 0.01 (−), 0.005 (−·)

solution on a succession of finer grids in order to check the convergence properties. Our constructed
solution was

utrue(x, t) = sin(ω(x− ct)) sin(ωy) sin(ωz),

vtrue(x, t) = sin(ωx) sin(ω(y − ct)) sin(ωz),

wtrue(x, t) = sin(ωx) sin(ωy) sin(ω(z − ct)),

where ω and c are constants. The material properties were chosen to vary smoothly according to

µ(x) = 1 + cos2(πx) cos2(πy) cos2(πz)

λ(x) = 1 + sin2(πx) sin2(πy) sin2(πz)

ρ(x) = 1.

A normal stress condition was imposed on the z = 0 surface and inhomogeneous Dirichlet conditions were
imposed on all other boundaries. The computational domain had sizes a = 2, b = 2, and c = 2. A number
of calculations with increasingly fine grid spacing were run and the errors were evaluated in the discrete
max-norm. (The discrete max-norm of a vector grid function vh = (uh, vh, wh) is defined as ||vh||∞ =
max(maxi,j,k |uh|,maxi,j,k |vh|,maxi,j,k |wh|). As expected we obtained second order convergence when
both the forcing and the solution are smooth, see Table 1. Non-smooth forcings and solutions will be
discussed in Section 3.

3 Singular source terms

In seismic wave propagation the source term is often applied at a point, along a line, or over a surface
in three-dimensional space. Sources along lines or surfaces are commonly decomposed into a number of
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t = 1

h ||vh − utrue||∞ rate

0.04 0.04331

0.02 0.01062 4.079

0.01 0.002654 4.00

0.005 0.0006627 4.00

Table 1: Errors in max-norm for decreasing h and smooth analytical solution utrue. Convergence rate
indicates second order convergence. Here c = 1 and ω = 2π.

point sources distributed along the corresponding line or surface,

f(x, t) =
∑

r

f (F )r (x, t) +
∑

r

f (M)
r (x, t). (71)

Two types of point sources occur in seismic applications. Point forces (f
(F )
r ) are, for example, used to

model internal forcings due to volcanic eruptions or external forcings applied to the free surface,

f (F )r (x, t) = gr(t)Frδ(x− xr), (72)

where δ(x) is the Dirac distribution and Fr is a constant vector. The second type of point source is

the point moment (or double couple), denoted by f
(M)
r in (71). Point moments are often used to model

earthquakes and explosions [2], and are of the form

f (M)
r (x, t) = gr(t)Mr · ∇δ(x− xr), (73)

where ∇δ(x) is the gradient of the Dirac distribution and Mr is a constant symmetric tensor.
Each term in (71) is applied at a location (xr, yr, zr) and it is desirable to make this location indepen-

dent of the grid so that the numerical modeling can be made as accurate as possible and no artifacts are
generated by “stair stepping” the point sources along a smooth line or surface in three-dimensional space.
Due to the singular nature of point sources, we can only expect the numerical solution to converge away
from the location of the sources. Furthermore, we can expect that different numerical techniques are
necessary for handling the two types of sources, since the point force depends on the Dirac distribution
while the point moment depends on its gradient, which is a more singular function.

The analyses of Waldén [24] and Tornberg and Engquist [22] demonstrate that it is possible to de-
rive regularized approximations of the Dirac distribution and its gradient, which result in point wise
convergence of the solution away from the sources. Based on these analyses, we define a hat function,

δhat(x) =
1

h





1− |x|/h, |x| < h,

0, elsewhere,
(74)

and use δhat(x− xr)δhat(y− yr)δhat(z− zr) to approximate δ(x) in (72). To approximate the gradient of
a Dirac distribution, we start from the piecewise cubic function

δcube(x) =
1

h





1− |x/h|/2− |x/h|2 + |x/h|3/2, |x| < h,

1− 11|x/h|/6 + |x/h|2 − |x/h|3/6, h ≤ |x| < 2h,

0, elsewhere.

(75)
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We then use 


δ′cube(x− xr)δhat(y − yr)δhat(z − zr)

δhat(x− xr)δ
′
cube(y − yr)δhat(z − zr)

δhat(x− xr)δhat(y − yr)δ
′
cube(z − zr)




to approximate the Cartesian components of ∇δ(x−xr) in (73). Note that neither (74) nor (75) need to
be aligned with the grid.

3.1 Spatial regularity

To study the relation between smoothness of the time function g(t) in the source term, and smoothness
in space of the solution, we analyze the related problem of the scalar wave equation with a singular source
term. In particular, we study the problem on an infinite domain with the forcing term applied at the
point (0, 0, 0) with homogeneous initial data,

ptt = ∇2p+ g(t)δ(x), x ∈ R3, t ≥ 0,

p(x, 0) = pt(x, 0) = 0,

The Fourier transform of this equation is

d2p̂

dt2
= −(k2x + k2y + k2z)p̂+ g(t) t ≥ 0, (76)

p̂(kx, ky, kz, 0) = p̂t(kx, ky, kz, 0) = 0, (77)

where the Fourier transform is given by

p̂(kx, ky, kz, t) =

∫ ∫ ∫
p(x, y, z, t)e−i(xkx+yky+zkz) dx dy dz.

Equation (76)–(77) is solved by

p̂(kx, ky, kz, t) =

{∫ t
0

∫ τ
0
g(τ ′) dτ ′ dτ, k = 0,

1
k

(
sin(kt)

∫ t
0
cos(kτ)g(τ) dτ − cos(kt)

∫ t
0
sin(kτ)g(τ) dτ

)
, k > 0.

(78)

where k =
√
k2x + k2y + k2z . If g(t) is continuously differentiable, we can integrate (78) by parts,

p̂(kx, ky, kz, t) =
1

k2

(
g(t)− cos(kt)g(0)− sin(kt)

∫ t

0

sin(kτ)g′(τ)dτ − cos(kt)

∫ t

0

cos(kτ)g′(τ)dτ

)
.

By assuming that g(t) has compact support, i.e., g(t) ≡ 0 for t ≤ 0 and t ≥ T , we get

p̂(kx, ky, kz, t) =
1

k2

(
− sin(kt)

∫ t

0

sin(kτ)g′(τ) dτ − cos(kt)

∫ t

0

cos(kτ)g′(τ) dτ

)
, t ≥ T.

The Fourier transform decay as 1/k2. We can continue integrating by parts as long as g(t) is sufficiently
differentiable, gaining one order of k for each integration. This shows that the solution p(x, t) has a Fourier
transform that decays as 1/kq for t > T if g(t) has compact support and is q − 1 times differentiable in
time. Furthermore, p̂ is bounded because the singularity at k = 0 is removable,

lim
k→0

p̂(kx, ky, kz, t) =

∫ t

0

(t− τ)g(τ) dτ =

∫ t

0

∫ τ

0

g(τ ′) dτ ′ dτ.
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Therefore, ∫ ∫ ∫
(1 + k2q

′

)|p̂|2 dkx dky dkz <∞

for q′ < q − 3/2. By the Sobolev Lemma [8], p can be identified with a function that has m continous
derivatives for m < q′ − 3/2 < q − 3. We conclude that for t > T , the solution p(x, t) will have m
continuous derivatives if g is compactly supported and smooth. Here m can be made arbitrarily large by
choosing g(t) sufficiently smooth.

If g(t) does not tend to zero for large t, the solution will remain singular at the location of the point
source but will be smooth away from it.

3.2 Free space solutions

Let the free space Green’s (dyadic) function for the elastic wave equation in a homogeneous material be
G(x, t), see [2]. Assuming homogeneous initial data, the analytical solution of the elastic wave equation
due to a source function f(x, t) follows as the space and time convolution between the Green’s function
and the source term,

u(x, t) =

∫

t

∫

Ω

f(x′, t′) ·G(x− x′, t− t′) dx′ dt′.

In the special case when the source is a point force, the spatial convolution becomes trivial due to the

Dirac distributions in f
(F )
r and the expression reduces to a time integral over t′. Near the source, the

solution behaves like 1/|x − xr|. A closed form solution can be obtained when the time-integration can
be performed analytically, for instance when g(t) is a polynomial function.

For a point moment source term f
(M)
r , the analytical solution can be written

u(x, t) =

∫ t

0

∫

Ω

gr(t
′) (Mr · ∇δ(x′ − xr)) ·G(x− x′, t− t′) dx′ dt′ =

∫ t

0

gr(t
′)Mr : ∇G(x− xr, t− t′) dt′,

where the colon represents the tensor contraction over two indices. Near the point moment, the solution
behaves like 1/|x− xr|2, so it is more singular than in the point force case.

To investigate how the numerical solution convergences when the source function is singular, we ran
a number of tests with point forces and point moments using the time function g(t) = P10(t) defined
in (70). This function has compact support in 0 ≤ t ≤ 1 and is four times continuously differentiable.
We took a computational domain with a = 2, b = 2, c = 2, and used the material parameters ρ = 1,
λ = 0.32, µ = 0.16. Dirichlet boundary conditions were enforced on all boundaries, but the boundaries
have no influence on the solution until t > 1.25 since cp = 0.8 and the point sources were centered
at xr = (1, 1, 1). The errors were measured at two different times in discrete max-, 2- and 1-norms.
Since the analytical solution is singular at the point where the source applies, that point was excluded
from the calculation of the norms. (The 2- and 1-norms for a vector grid function u are defined as
||u||22 = h3

∑
i,j,k(|ui,j,k|2 + |vi,j,k|2 + |wi,j,k|2) and ||u||1 = h3

∑
i,j,k(|ui,j,k|+ |vi,j,k|+ |wi,j,k|).) First we

evaluated the errors at t = 0.5 when g(t) > 0, see Table 2. As expected we did not achieve second order
convergence because the solution of the continuous problem is singular. Also note that the convergence
rate is slower for the point moment source than in the less singular point force case. In Figure 4, we
show the errors as function of the distance from the singularity. Away from the singularity, the errors are
smooth in space and decay like O(h2) as the grid size tends to zero. However, near the source the errors
do not decay as the grid is refined and this explains the convergence numbers in Table 2. Secondly,
we evaluated the errors at t = 1.2, when g(t) = 0, see Table 3. After the source term has vanished the
solution becomes smooth everywhere and our results show the proper second order convergence rate in
accordance with theory.
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point force

h ||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1

rate∞ rate2 rate1

0.04 0.04833 0.08293 0.1011

0.02 0.04108 0.05174 0.03248 1.176 1.602 3.113

0.01 0.03936 0.03525 0.009970 1.043 1.467 3.257

0.005 0.03894 0.02470 0.002955 1.010 1.427 3.373

point moment

h ||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1

rate∞ rate2 rate1

0.04 0.3051 0.2805 0.2272

0.02 0.3208 0.2760 0.1154 0.9509 1.016 1.969

0.01 0.3253 0.2769 0.05759 0.9871 0.9967 2.003

0.005 0.3264 0.2782 0.02872 0.9970 0.9953 2.005

Table 2: Relative error in the numerical solution of the free space problem at time t = 0.5 (singular
solution) due to a point force (top) and a point moment (bottom), measured in max-, 2- and 1-norms.
Here vh and u denote the numerical and analytical solutions, respectively.
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from the source, but not near it. Near the source, the error is about 211 ≈ 2000 times larger for the point
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point force

h ||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1

rate∞ rate2 rate1

0.04 0.04516 0.03984 0.04122

0.02 0.01180 0.01001 0.01025 3.831 3.984 4.021

0.01 0.003023 0.002512 0.002560 3.907 3.988 4.004

0.005 0.0007592 0.0006287 0.0006400 3.983 4.000 4.00

point moment

h ||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1

rate∞ rate2 rate1

0.04 0.1170 0.1016 0.09981

0.02 0.03400 0.02762 0.02681 3.440 3.678 3.724

0.01 0.008872 0.007109 0.006855 3.833 3.885 3.908

0.005 0.002244 0.001793 0.001724 3.961 3.972 3.985

Table 3: Relative error in the numerical solution of the free space problem at time t = 1.2 (smooth
solution) due to a point force (top) and a point moment (bottom), measured in max-, 2- and 1-norms.
Here vh and u denote the numerical and analytical solutions, respectively.

We remark that in the point moment source case it is important to use the δ′cube approximation in
the gradient of the Dirac distribution, as opposed to δ′hat. Otherwise the convergence rate will be slower
than second order in the grid size (example not shown to conserve space).

3.3 Half spaces and Lamb’s problem

Point forcing on the boundary of a half space is referred to as Lamb’s problem [18]. Analytical solutions
for the three-dimensional problem have been presented by a number of authors with different degrees
of applicability. For the case of a point force directed normal to the free surface z = 0, the general
solution can be found in [20] or [6]. To test the accuracy of the numerical solutions, we performed a
grid refinement study on a computational domain with sizes a = 4, b = 4, c = 2, enforcing a free surface
boundary condition along z = 0 and Dirichlet conditions on all other boundaries. We assumed a Poisson
material with ρ = 1, µ = 1, and λ = 1, i.e., cp/cs =

√
3, and used the same time function g(t) as in

the free space case. In this experiment, the point force was applied at xr = (2, 2, 0), so the Dirichlet
boundaries should not effect the solution until t > 1.15. The error in the numerical solution was evaluated
both at t = 0.5, when the solution of the continuous problem is singular, and at t = 1.1 when the solution
is smooth. We only report the error along the free surface, because the analytical solution is difficult to
evaluate in the interior of the domain. As in the free space problem, we observe second order convergence
only when the solution is smooth in space, see Table 4.
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t = 0.5

h ||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1

rate∞ rate2 rate1

0.04 0.02797 0.08631 0.2007

0.02 0.01758 0.05312 0.1102 1.591 1.625 1.821

0.01 0.01547 0.04002 0.05028 1.136 1.327 2.192

0.005 0.01696 0.03696 0.02305 0.9121 1.083 2.181

t = 1.1

h ||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1

rate∞ rate2 rate1

0.04 0.2892 0.3081 0.3686

0.02 0.1082 0.1186 0.1408 2.673 2.598 2.618

0.01 0.03138 0.03496 0.04175 3.448 3.392 3.372

0.005 0.008189 0.009194 0.01100 3.832 3.802 3.795

Table 4: Relative error in the numerical solution of Lamb’s problem at t = 0.5 (top) (when the solution
is singular), and at t = 1.1 (bottom) (when the solution is smooth), measured in max-, 2- and 1- norms.
Here vh and u denote the numerical and analytical solutions, respectively.

4 Applications and extensions of the method

4.1 Surface waves

The elastodynamic equations together with the stress free boundary condition admit solutions in the form
of surface waves, i.e., waves propagating along the surface with amplitude decaying exponentially away
from the surface. For the homogeneous two-dimensional half plane problem in z ≥ 0, these solutions are
commonly referred to as Rayleigh waves and have the form

u(x, z, t) = A

(
e−ηpωz −

(
1− c2r

2c2s

)
e−ηsωz

)
sin(ω(crt− x)), (79)

w(x, z, t) = A

(
1− c2r

c2p

)1/2(
−e−ηpωz +

(
1− c2r

2c2s

)−1

e−ηsωz

)
cos(ω(crt− x)), (80)

where

ηp =

(
1− c2r

c2p

)1/2
, ηs =

(
1− c2r

c2s

)1/2
.

Here, cr is the phase velocity of the wave, which is the real root of the Rayleigh equation

(
2− c2r

c2s

)2
− 4

(
1− c2r

c2p

)1/2(
1− c2r

c2s

)1/2
= 0, 0 < cr < cs.

The waves described by (79)-(80) are non-dispersive, i.e. cr is independent of ω. However, the dis-
cretization introduce errors that can be interpreted as a numerical dispersion relation where the phase
velocity depends on the resolution on the grid. The numerical dispersion relation for our interior differ-
ence stencil coincides with previous central difference schemes which were analyzed by Cohen [5]. For
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c∗r/cr

PPW ν = 2 ν = 3 ν = 5 ν = 10

40 1.0028 1.0065 1.017 1.055

20 1.011 1.022 1.052 1.12

10 1.031 1.06 1.11 1.2

8 1.043 1.083 1.13 1.5

6 1.049 1.095 1.35 1.63

5 1.07 1.11 1.4 1.72

4 1.095 1.14 1.65 1.78

3.5 1.16 1.4 2.76 2.9

Table 5: Numerical dispersion relation for the finite difference scheme applied to Rayleigh waves. The
table shows the ratio between the estimated phase velocity in the numerical solution and its continuous
value, for different number of grid points per wave length (PPW) and ν.

surface waves, the numerical dispersion relation provides the numerical phase velocity c∗r as a function of
the resolution ωh, which often is expressed in terms of the number of grid points per wavelength,

PPW =
2π

ωh
.

Since it is very complicated to analytically derive the numerical dispersion relation for surface waves,
we instead investigate the relation by numerical experiments using a two-dimensional version of our
method. A free surface condition was imposed at z = 0 and periodic boundary conditions were used in
the x-direction. We enforced (79)-(80) as initial data, which only contains a single spatial frequency ω.
Hence, the numerical solution should essentially advect the initial data with a modified phase velocity c∗r .
We determined c∗r by visually inspecting the solution along the surface at time t = 1/cr, and comparing
the positions of the numerical and analytical solutions, see Table 5. Note that the visual inspection is
not very precise when the solution is poorly resolved on the grid (PPW < 5), so these results should be
interpreted accordingly. Despite this uncertainty, it is clear that the numerical phase velocity increases
rapidly as ωh approaches 2π/3 and ν ≥ 3. It is interesting to note that this value of ωh coincides
with the spatial frequency of the fast surface waves which determine the stability limit of the time step,
cf. Section 2.3.

4.2 Non-reflecting boundary conditions

When modeling seismic events such as the simplified earthquake in Section 4.3, it is desirable to truncate
the computational domain without causing significant amounts of artificial reflections. Many different
methods, including absorbing, non-reflecting, and perfectly matching techniques have been proposed in
the literature. Here we will use the first order non-reflecting boundary conditions developed by Clayton
and Engquist [4]. The well-known idea behind these boundary conditions is to impose a differential
equation on the boundary which allows wave propagation only in the outward direction. For boundaries
with x = const., the boundary conditions are

ut = ±cpux, vt = ±csvx, wt = ±cswx, (81)
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where the positive signs are taken for the lower boundary x = 0 and the negative signs for the upper
boundary x = a. Similar advection equations are imposed at boundaries with y = const. or z = const.

Away from edges in the computational domain, we have found that the box scheme discretization [4]
of the boundary condition (81) works well. At the edges of the domain, i.e., where two non-reflecting
boundaries meet, Clayton and Engquist suggested applying the non-reflecting boundary condition in a
diagonal direction. However, we have found that imposing compatibility conditions along the edges result
in a more rubust method which also is easier to implement. We examplify the compatibility conditions
on the edge where x = 0 and y = 0. Along the boundary x = 0, we impose (81) (with the positive sign).
The corresponding boundary conditions along y = 0 are

ut = csuy, vt = cpvy, wt = cswy, y = 0, 0 ≤ x ≤ a, 0 ≤ z ≤ c, t ≥ 0.

Equating the time derivatives along the edge gives

cpux = csuy,

csvx = cpvy, y = 0, x = 0, 0 ≤ z ≤ c, t ≥ 0,

cswx = cswy.

Similar relations can easily be derived for the other edges.

4.3 A simplified earthquake

The Pacific Earthquake Engineering Center and the Southern California Earthquake Center have defined
a set of seismic model problems in an effort to evaluate and validate wave propagation software [7]. We
have computed solutions to several of these problems but in order to save space we only report our
results for problem LOH.2, which models a simplified earthquake with slip on an extended fault surface,
see Figure 5. The material in this model consists of a layer over a half-space, where the layer extends
from depth z = 0 to z = 1000. The velocities and density in the layer are cp = 4000, cs = 2000, ρ = 2600.
The half-space z ≥ 1000 has the material properties cp = 6000, cs = 3464, ρ = 2700.

The slip on the extended fault is modeled by distributing point moment sources on a regular grid
with size δs (which is independent of the grid size h) over the fault surface x = 0, 0 ≤ y ≤ 8000,
2000 ≤ z ≤ 6000. In this case, the fault slips by a constant amount in the y-direction, which means that
the Cartesian components of the moment tensor Mr in each source term (73) equals

Mr = δ2sµS0




0 1 0

1 0 0

0 0 0


 , S0 = 1.

The modeled earthquake starts at the hypocenter xH = (0, 1000, 4000), and the rupture propagates along
the fault surface with a uniform rupture velocity of 3000. The propagation of the rupture is modeled by
letting the source time function gr(t) depend on the distance between the hypocenter and the location of
each source,

Rr = |xr − xH |.
The time dependence of source number r is

gr(t) =





0, t < Rr/3000,

1−
(
1 +

τr(t)

T

)
e−τr(t)/T , t ≥ Rr/3000,

, τr(t) = t−Rr/3000,
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Figure 5: The computational domain and fault surface for the simplified earthquake problem LOH.2
(upper left). The • indicates the measurement station and the magnified plane shows the fault surface,
where the slip starts at the hypocenter indicated by concentric circles. Our results are shown with solid
lines for the vertical (top right), radial (bottom left), and transverse (bottom right) velocity components,
and the dashed lines are the results from the UCSB code, see [7].

where T = 0.1 is related to the rise-time of the slip, i.e., how quickly the fault slips at each fixed point
along the fault surface.

In our calculation, the extent of the computational domain was −15, 000 ≤ x ≤ 15, 000, −15, 000 ≤
y ≤ 15, 000, 0 ≤ z ≤ 17, 000, and non-reflecting boundary conditions were imposed on all boundaries
except at z = 0, where a free surface condition was enforced. The grid size was h = 50 corresponding to
about 1.23 × 108 grid points, and 1,742 time steps were taken to reach time t = 9. We discretized the
fault surface with δs = 100, giving 3200 point moment sources. Results for this problem are available
from a number of finite-difference and finite-element codes [7]. To compare our results, we recorded the
time evolution of the velocity (i.e., the time derivative of the displacement) at a number of stations along
a line on the free surface. Since all codes predicted similar results, we only show the comparison with
the UCSB code (using notation from [7]). This code solves the elastic wave equation as a first order
system in velocity-stress formulation using a staggered grid finite-difference method. Since the source
time functions gr(t) trigger high frequency motions which are not resolvable on the mesh, the results from
both our and the UCSB code were low-pass filtered in time using a Gaussian with filter width σ = 0.05.
In Figure 5 we compare solutions at a station located at x = (6000, 8000, 0). Velocities are given in a
cylindrical coordinate system (radial, transverse, up) with origin at (0, 0, 0). Note that the non-reflecting
boundary conditions only effect the solution after t ≈ 5 and that our results compare especially well with
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the other code before that time. One way of determining the accuracy of the solution after t ≈ 5 would
be to repeat the simulation on a larger domain, but the computational cost was too great to perform
that experiment.

5 Conclusions

We have described a stable, second order accurate finite difference method for the elastic wave equation
in second order formulation subject to a stress-free boundary condition on a flat surface. We have proven
that the method is stable even when the coefficients are discontinuous in space, as long as µ > 0, λ > 0,
and ρ > 0 at all grid points. The stability limit on the time step has been studied in detail, and we have
shown that all values of cp/cs >

√
2 can be handled if the time step is reduced by 9% compared to the

von Neumann value. We have also described a way to discretize point forces and moments on the mesh
so that the solution becomes second order accurate away from the singularity in the solution.

In seismic applications it is common to have water (e.g., a lake or an ocean) in parts of the domain.
Only compressional (P-) waves can travel through water and the acoustic wave propagation can be
modeled by setting µ = 0 in the elastic wave equation. We have generalized our scheme to handle the
mixed elastic/acoustic case, and this scheme was used as part of a simulation effort coordinated by the
U.S. Geological Survey to model ground motions during the great 1906 San Francisco earthquake [21].
Our results showed good agreement with other codes and measured Mercalli intensities. More details will
be described in a forthcoming paper.

Future plans include generalizing our embedded boundary technique for the scalar wave equation [17,
15, 14], to the elastic wave equation. In the seismic application, embedded boundaries will allow us to
include effects of topography and more accurately treat internal material discontinuities.
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A Accuracy (Theorem 1)

We will prove the accuracy of the semi-discrete equations by showing that they are equivalent to another
approximation which clearly is second order accurate. In particular, we want to analyze the accuracy
of the spatial discretization (17), (18), (19) at the z = 0 boundary, where the free surface boundary

condition is applied. At this boundary, the operator D̃z
0 simplifies to Dz

+, which would appear to only
give a first order accurate difference formula. However, we proceed to show that this difference for-
mula, in combination with the discrete free-surface boundary condition, indeed results in a second order
approximation.

We start by eliminating the ghost points above the free surface from the semi-discrete system (17),
(18), (19), subject to the boundary conditions (20), (21), and (22). To save space, we only go through
the details for (17) subject to (20). The terms in L(u) that contain z-differences on the z = 0 grid line
are

Ti,j =: Dz
−

(
µi,j,3/2D

z
+ui,j,1

)
+Dx

0

(
λi,j,1D

z
+wi,j,1

)
+Dz

+ (µi,j,1D
x
0wi,j,1) ,

The free surface boundary condition (20) gives

µi,j,1/2D
z
+ui,j,0 = −µi,j,3/2Dz

+ui,j,1 − 2µi,j,1D
x
0wi,j,1.
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Hence,

Ti,j =
2

h

[
µi,j,3/2D

z
+ui,j,1 + µi,j,1D

x
0wi,j,1

]
+Dx

0

(
λi,j,1D

z
+wi,j,1

)
+Dz

+ (µi,j,1D
x
0wi,j,1) . (82)

We compare the spatial discretization to a fully centered scheme where the terms in L(u) that contain
z-differences on the z = 0 grid line,

T̃i,j =: Dz
−

(
µi,j,3/2D

z
+ui,j,1

)
+Dx

0 (λi,j,1D
z
0wi,j,1) +Dz

0 (µi,j,1D
x
0wi,j,1) . (83)

We can perturb the free surface boundary condition (20) by a second order term,

1

2

(
µi,j,3/2D

z
+ui,j,1 + µi,j,1/2D

z
+ui,j,0

)
+ µi,j,1D

x
0wi,j,1 = h2Ri,j . (84)

The resulting spatial discretization will be second order accurate as long as R is a difference operator
which is bounded independently of h for smooth functions. We will determine R such that (83) subject
to (84) is equivalent to (82). The boundary condition (84) gives

µi,j,1/2D
z
+ui,j,0 = −µi,j,3/2Dz

+ui,j,1 − 2µi,j,1D
x
0wi,j,1 + 2h2Ri,j . (85)

Using (85), (83) can be written

T̃i,j =
2

h

[
µi,j,3/2D

z
+ui,j,1 + µi,j,1D

x
0wi,j,1

]
+Dx

0 (λi,j,1D
z
0wi,j,1) +Dz

0 (µi,j,1D
x
0wi,j,1) + 2hRi,j .

Hence, T = T̃ if

Dx
0

(
λi,j,1D

z
+wi,j,1

)
+Dz

+ (µi,j,1D
x
0wi,j,1) = Dx

0 (λi,j,1D
z
0wi,j,1) +Dz

0 (µi,j,1D
x
0wi,j,1) + 2hRi,j .

We have

Dz
0w = Dz

+w −
h

2
Dz
+D

z
−w,

which gives

Ri,j =
1

4
Dx
0 (λi,j,1D

z
+D

z
−wi,j,1) +

1

4
Dz
+D

z
−(µi,j,1D

x
0wi,j,1).

Similar calculations show that the boundary conditions (21) and (22) can be perturbed by second order
terms to account for the difference between a fully centered and a one-sided spatial discretization in L(v)

and L(w), respectively.
This proves that the semi-discrete approximation (17)-(19) subject to the boundary conditions (20)-

(22) is second order accurate.

Note: Inserting the expression for Ri,j into (84) shows that the fully centered approximation couples
all ghost points (k = 0) along the free surface. Hence, using this formulation would require a linear
system to be solved to obtain the ghost point values at each time step. As we have demonstrated, the
same solution can be obtained without solving a linear system by using our one-sided formula on the
boundary.
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B Self-adjointness of the spatial operator (Lemma 1)

It is straight forward to show the following summation by parts identities:

(w,Dz
−v)h = −(Dz

+w, v)h −
h2

2

∑

i,j

(wi,j,2vi,j,1 + wi,j,1vi,j,0) + h2
∑

i,j

wi,j,Nz
vi,j,Nz−1, (86)

(w, D̃z
0v)h = −(D̃z

0w, v)h − h2
∑

i,j

wi,j,1vi,j,1 +
h2

2

∑

i,j

(wi,j,Nz−1vi,j,Nz
+ wi,j,Nz

vi,j,Nz−1) , (87)

where
∑

i,j =
∑Nx−1

i=1

∑Ny−1
j=1 . Since the solution satisfies periodic boundary conditions in the x and

y-directions, we have

(w,Dx
−v)h = −(Dx

+w, v)h, (w,Dx
0v)h = −(Dx

0w, v)h, (88)

(w,Dy
−v)h = −(Dy

+w, v)h, (w,Dy
0v)h = −(Dy

0w, v)h. (89)

Consider the three terms in the left hand side of (26): LHS := I + II + III,

I =
(
u0, L(u)(u1, v1, w1)

)
h
, II =

(
v0, L(v)(u1, v1, w1)

)
h
, III =

(
w0, L(w)(u1, v1, w1)

)
h
.

Applying the summation by parts identities (86)-(89) on the first term gives

I = −
(
Dx
+u

0, Ex
1/2(2µ+ λ)Dx

+u
1
)
h
−
(
Dy
+u

0, Ey
1/2(µ)D

y
+u

1
)
h
−
(
Dz
+u

0, Ez
1/2(µ)D

z
+u

1
)
h

−
(
Dx
0u
0, λDy

0v
1 + λD̃z

0w
1
)
h
−
(
Dy
0u
0, µDx

0v
1
)
h
−
(
D̃z
0u
0, µDx

0w
1
)
h
+B(u), (90)

where the boundary terms are

B(u) =− h2

2

∑

i,j

(
u0i,j,2µi,j,3/2D

z
+u

1
i,j,1 + u0i,j,1µi,j,1/2D

z
+u

1
i,j,0

)

− h2
∑

i,j

u0i,j,1µi,j,1D
x
0w

1
i,j,1 + h2

∑

i,j

u0i,j,Nz
µi,j,Nz−1/2D

z
+u

1
i,j,Nz−1

+
h2

2

∑

i,j

(
u0i,j,Nz−1µi,j,Nz

Dx
0w

1
i,j,Nz

+ u0i,j,Nz
µi,j,Nz−1D

x
0w

1
i,j,Nz−1

)
.

The homogeneous Dirichlet boundary condition (23) gives

u0i,j,Nz
= 0, Dx

0w
1
i,j,Nz

= 0.

Hence, the third and fourth terms in B(u) vanish. To analyze the first term, we note that

u0i,j,2 = u0i,j,1 + hDz
+u

0
i,j,1.

Therefore,

B(u) = −h
2

2

∑

i,j

u0i,j,1
(
µi,j,3/2D

z
+u

1
i,j,1 + µi,j,1/2D

z
+u

1
i,j,0 + 2µi,j,1D

x
0w

1
i,j,1

)

− h3

2

∑

i,j

µi,j,3/2D
z
+u

0
i,j,1D

z
+u

1
i,j,1. (91)
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The first term in (91) vanishes because of the free-surface boundary condition (20) and we arrive at

B(u) = −h
3

2

∑

i,j

µi,j,3/2D
z
+u

0
i,j,1D

z
+u

1
i,j,1.

The second term in LHS can be analyzed in the same way giving

II = −
(
Dx
+v

0, Ex
1/2(µ)D

x
+v

1
)
h
−
(
Dy
+v

0, Ey
1/2(2µ+ λ)Dy

+v
1
)
h
−
(
Dz
+v

0, Ez
1/2(µ)D

z
+v

1
)
h

−
(
Dx
0v
0, µDy

0u
1
)
h
−
(
Dy
0v
0, λDx

0u
1 + λD̃z

0w
1
)
h
−
(
D̃z
0v
0, µDy

0w
1
)
h
+B(v), (92)

where

B(v) = −h
3

2

∑

i,j

µi,j,3/2D
z
+v

0
i,j,1D

z
+v

1
i,j,1.

For the third term in LHS we get

III = −
(
Dx
+w

0, Ex
1/2(µ)D

x
+w

1
)
h
−
(
Dy
+w

0, Ey
1/2(µ)D

y
+w

1
)
h
−
(
Dz
+w

0, Ez
1/2(2µ+ λ)Dz

+w
1
)
h

−
(
Dx
0w

0, µD̃z
0u
1
)
h
−
(
Dy
0w

0, µD̃z
0v
1
)
h
−
(
D̃z
0w

0, λDx
0u
1 + λDy

0v
1
)
h
+B(w), (93)

where

B(w) = −h
3

2

∑

i,j

(2µi,j,3/2 + λi,j,3/2)D
z
+w

0
i,j,1D

z
+w

1
i,j,1.

After applying the same summation by parts rules to the right hand side of (26) it is straight forward
to verify that the right hand side equals the left hand side.

C Ellipticity of the spatial operator (Lemma 3)

We will mimic the construction of the energy in the continuous case by exploring the identity

Dx
−E

x
1/2(µ)D

x
+u = Dx

0 (µD
x
0u)−

h2

4
Dx
+D

x
−

(
µDx

+D
x
−u
)

(94)

in the periodic x- and y-directions. The problem is not periodic in the z-direction. We will use the
following summation-by-parts form of the above identity instead (N = Nz in this appendix)

(
u,Dz

−E
z
1/2(µ)D

z
+u
)
h
= −

(
D̃z
0u, µD̃

z
0u
)
h
− h2

4

(
Dz
+D

z
−u, µD

z
+D

z
−u
)
hr

+ h2
∑

i,j

(−1

2
µi,j,1/2ui,j,1D

z
+ui,j,0 −

1

2
µi,j,3/2ui,j,1D

z
+ui,j,1

+
µi,j,N
2

ui,j,N−1D
z
+ui,j,N−1 +

µi,j,N−1

2
ui,j,ND

z
+ui,j,N−1) (95)

We obtain, by use of (94) in the periodic directions,

L(u)(u, v, w) = 2Dx
−

(
Ex
1/2(µ)D

x
+u
)
+Dz

−

(
Ez
1/2(µ)D

z
+u
)

+Dx
0

(
λ(Dx

0u+Dy
0v + D̃z

0w)
)
+Dy

0 (µ(D
y
0u+Dx

0v)) + D̃z
0 (µD

x
0w)

− h2

4

(
Dx
+D

x
−(λD

x
+D

x
−u) +Dy

+D
y
−(µD

y
+D

y
−u)

)
,

31



L(v)(u, v, w) = 2Dy
−

(
Ey
1/2(µ)D

y
+v
)
+Dz

−

(
Ez
1/2(µ)D

z
+v
)

+Dy
0

(
λ(Dx

0u+Dy
0v + D̃z

0w)
)
+Dx

0 (µ(D
y
0u+Dx

0v)) + D̃z
0 (µD

y
0w)

− h2

4

(
Dx
+D

x
−(µD

x
+D

x
−v) +Dy

+D
y
−(λD

y
+D

y
−v)

)
,

L(w)(u, v, w) = 2Dz
−

(
Ez
1/2(µ)D

z
+w
)
+Dz

−

(
Ez
1/2(λ)D

z
+w
)

+ D̃z
0 (λ(D

x
0u+Dy

0v)) +Dx
0

(
µ(D̃z

0u+Dx
0w)

)
+Dy

0

(
µ(D̃z

0v +Dy
0w)

)

− h2

4

(
Dx
+D

x
−(µD

x
+D

x
−w) +Dy

+D
y
−(µD

y
+D

y
−w)

)
,

Identities (95) and (87) give

(u, L(u))h = −2(Dx
+u,E

x
1/2(µ)D

x
+u)h − (D̃z

0u, µD̃
z
0u)h −

(
Dx
0u, λ(D

x
0u+Dy

0v + D̃z
0w)

)
h

− (Dy
0u, µ(D

y
0u+Dx

0v))h −
(
D̃z
0u, µD

x
0w
)
h

− h2

4

[
(Dx

+D
x
−u, λD

x
+D

x
−u)h + (Dy

+D
y
−u, µD

y
+D

y
−u)h + (Dz

+D
z
−u, µD

z
+D

z
−u)hr

]

+ T
(u)
1 + T

(u)
N

where T
(u)
1 and T

(u)
N are the boundary terms that correspond to the boundary at k = 1 and at k = N ,

respectively. The periodic directions do not contribute with any boundary terms as seen from (88) and
(89). We have

T
(u)
1 = h2

∑

i,j

(
−1

2
µi,j,1/2ui,j,1D

z
+ui,j,0 −

1

2
µi,j,3/2ui,j,1D

z
+ui,j,1 − ui,j,1µi,j,1D

x
0wi,j,1

)

= h2
∑

i,j

ui,j,1

(
−1

2
µi,j,1/2D

z
+ui,j,0 −

1

2
µi,j,3/2D

z
+ui,j,1 − µi,j,1D

x
0wi,j,1

)
.

It follows directly from the free surface boundary condition (20) that T
(u)
1 = 0. The boundary terms at

k = N are given by

T
(u)
N = h2

∑

i,j

(
µi,j,N−1

2
ui,j,ND

x
0wi,j,N−1 +

µi,j,Nui,j,N−1

2
Dx
0wi,j,N

+
µi,j,N
2

ui,j,N−1D
z
−ui,j,N +

µi,j,N−1

2
ui,j,ND

z
−ui,j,N ).

The Dirichlet boundary condition at k = N gives

T
(u)
N = −h

∑

i,j

µi,j,N
2

u2i,j,N−1.
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Similarly, we obtain

(v, L(v))h = −2(Dy
+v,E

y
1/2(µ)D

y
+v)h − (D̃z

0v, µD̃
z
0v)h −

(
Dy
0v, λ(D

x
0u+Dy

0v + D̃z
0w)

)
h

− (Dx
0v, µ(D

y
0u+Dx

0w))h −
(
D̃z
0v, µD

y
0w
)
h

− h2

4

[
(Dx

+D
x
−v, µD

x
+D

x
−v)h + (Dy

+D
y
−v, λD

y
+D

y
−v)h + (Dz

+D
z
−v, µD

z
+D

z
−v)hr

]

− h
∑

i,j

µi,j,N
2

v2i,j,N−1.

In the z-direction, we make use of (87) and (95) as well as
(
w,Dz

+

(
Ez
1/2(µ)D

z
−w
))

h
= −

(
Dz
+w,E

z
1/2(µ)D

z
+w
)
h

+ h2
∑

i,j

−1

2
µi,j,1/2wi,j,1D

z
+wi,j,0 −

1

2
µi,j,3/2wi,j,1D

z
+wi,j,1 −

h

2
µi,j,3/2(D

z
+wi,j,1)

2

+ µi,j,N−1/2wi,j,ND
z
+wi,j,N−1.

We have

(w,L(w))h = −2(Dz
+w,E

z
1/2(µ)D

z
+w)h − (D̃z

0w, λD̃
z
0w)h − (D̃z

0w, λ(D
x
0u+Dy

0v))h

− (Dx
0w, µ(D

x
0w + D̃z

0u))h − (Dy
0w, µ(D

y
0w + D̃z

0v))h

− h2

4

[
(Dx

+D
x
−w, µD

x
+D

x
−w)h + (Dy

+D
y
−w, µD

y
+D

y
−w)h + (Dz

+D
z
−w, λD

z
+D

z
−w)hr

]

+ T
(w)
1 + T

(w)
N ,

where T
(w)
1 are the boundary terms that belong to the free surface boundary, and T

(w)
N are the boundary

terms that belong to the Dirichlet boundary. We have

T
(w)
1 = h2

∑

i,j

−1

2
λi,j,1/2wi,j,1D

z
+wi,j,0 −

1

2
λi,j,3/2wi,j,1D

z
+wi,j,1 − wi,j,1λi,j,1(D

x
0ui,j,1 +Dy

0vi,j,1)

− µi,j,1/2wi,j,1D
z
+wi,j,0 − µi,j,3/2wi,j,1D

z
+wi,j,1 − hµi,j,3/2(D

z
+wi,j,1)

2 =

h2
∑

i,j

wi,j,1(−
1

2
λi,j,1/2D

z
+wi,j,0 −

1

2
λi,j,3/2D

z
+wi,j,1 − λi,j,1(D

x
0ui,j,1 +Dy

0vi,j,1)

− µi,j,1/2D
z
+wi,j,0 − µi,j,3/2D

z
+wi,j,1)− hµi,j,3/2(D

z
+wi,j,1)

2.

The free surface boundary condition (22) gives

T
(w)
1 = −h3

∑

i,j

µi,j,3/2(D
z
+wi,j,1)

2.

At the Dirichlet boundary we have

T
(w)
N = h2

∑

i,j

2µi,j,N−1/2wi,j,ND
z
+wi,j,N−1 +

1

2
wi,j,N−1λi,j,N (Dx

0ui,j,N +Dy
0vi,j,N )

+
1

2
wi,j,Nλi,j,N−1(D

x
0ui,j,N−1 +Dy

0vi,j,N−1) +
λi,j,N
2

wi,j,N−1D
z
+wi,j,N−1

+
λi,j,N−1

2
wi,j,ND

z
+wi,j,N−1 = −h

∑

i,j

λi,j,N
2

w2i,j,N−1.
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Adding the expressions for (u, L(u)), (v, L(v)), and (w,L(w)) results in (28), (29), and (30).
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